		•••	•	•	•	•	•	••	b	ا ا	./	2	4.2	ע. :			Co	ÞУ	5	6	(
•	1			**********						•	•	•	N/	35	A	TM	x	-59	16		j.

NASA

GPO PRICE \$ ____

OTS PRICE(S) \$

Hard copy (HC) 200

Microfiche (MF)

TECHNICAL MEMORANDUM

X-596

HEAT-TRANSFER MEASUREMENTS IN REGIONS OF FLOW SEPARATION

AND REATTACHMENT ON TWO AXISYMMETRIC MODELS

AT MACH NUMBERS FROM 2.65 TO 4.50

By Robert L. Stallings, Jr., Ward F. Hodge, and Paige B. Burbank

Langley Research Center Langley Air Force Base, Va.

Authority: Memo Geo. Drobka NASA HQ. Code ATSS-A Dtd. 3-12-64 Subj: Change in Security Classification Marking.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

October 1961

165-128

(PAGES)

FACILITY FORM 602

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-596

HEAT-TRANSFER MEASUREMENTS IN REGIONS OF FLOW SEPARATION

AND REATTACHMENT ON TWO AXISYMMETRIC MODELS

AT MACH NUMBERS FROM 2.65 TO 4.50* **

By Robert L. Stallings, Jr., Ward F. Hodge, and Paige B. Burbank

SUMMARY

12804

Heat-transfer coefficients on two axisymmetric models having downstream facing steps were determined in the Langley Unitary Plan wind tunnel. One model, denoted as the stepped-cylinder model, consists of a truncated conical nose with a base radius larger than the cylindrical afterbody. The second model duplicates the downstream facing step at the juncture of the fourth and fifth stages of an NASA five-stage research vehicle.

The stepped-cylinder model with artificial transition was tested at Mach numbers of 2.65 and 3.51, Reynolds numbers per foot from 0.8 × 10⁶ to 3.1 × 10⁶, and angles of attack from 0⁰ to 20⁰. At all angles of attack the heating rates on the nose in and downstream of the region of reattachment were predicted by turbulent cone theory based on the local Mach number and the local Reynolds number using a distance measured from the stagnation point on the front face. At an angle of attack of 0⁰ the measured heat-transfer rates downstream of the region of separation at the rearward facing step were in good agreement with turbulent flat-plate theory based on local conditions and a boundary layer originating at the region of reattachment. The maximum heat-transfer coefficient in the reattachment region along the windward meridian of the cylinder at an angle of attack of 20⁰ was 115 percent of the measured stagnation-point value at an angle of attack of 0⁰.

^{**}Title, Unclassified.

^{*}The contribution of Robert L. Stallings, Jr., to the subject paper was in part presented as a thesis entitled "An Investigation of the Aerodynamic Heating Rates in Regions of Flow Reattachment on Two Axisymmetric Configurations," which was offered in partial fulfillment of the requirements for the degree of Master of Science in Aeronautical Engineering, Virginia Polytechnic Institute, Blacksburg, Virginia, May 1961.

The measured heating rates along the windward meridian downstream of the region of reattachment at angles of attack greater than 0° were in good agreement with turbulent infinite-swept-cylinder theory.

The five-stage research vehicle model was tested at Mach numbers of 3.51 and 4.50, Reynolds numbers per foot from 2.8×10^6 to 4.5×10^6 , and an angle of attack of 0° . The measured values downstream of the rearward facing step were in good agreement with turbulent flat-plate theory evaluated at local conditions and a local Reynolds number based on the axial length from the forward stagnation point.

INTRODUCTION

Wind-tunnel tests of the Project Mercury reentry configuration have indicated heat-transfer rates in the flow reattachment regions on the rearward part of the spacecraft to be of the same order of magnitude as those on the stagnation point of the ablation shield. (See ref. 1.) A survey of the literature indicated that the limited amount of existing information pertaining to the boundary-layer properties associated with the flow reattachment region downstream of a rearward facing step is primarily concerned with a two-dimensional-flow field, for example, references 2, 3, and 4. Therefore, an experimental program at the Langley Unitary Plan wind tunnel is now in progress to evaluate the effects of nose shape, model attitude, and free-stream variables on the aerodynamic heating associated with the reattachment region on axisymmetric bodies. In order to expedite publication of the phase of the program for which experimental tests are completed, only two models will be discussed in this paper. One model, denoted as the stepped-cylinder model, consists of a truncated-cone nose section and a cylindrical afterbody, the radius of the base of the nose being larger than the radius of the cylinder and thus forming a downstream facing step at the nose-afterbody juncture. The second model duplicates the fairing of the fourth and fifth stages of an NASA five-stage research vehicle. This model has a downstream facing step at the juncture of the fourth and fifth stages, and it was speculated that, if reattachment occurred as in reference 1, the resultant high heating rates on a magnesium stage fairing could be the reason for previous unexplained vehicle failures.

The stepped-cylinder model was tested at angles of attack from 0° to 20° at Mach numbers of 2.65 and 3.51; the five-stage research vehicle model was tested at an angle of attack of 0° at Mach numbers of 3.51 and 4.50.

SYMBOLS

c_p	pressure coefficient, $\frac{p_{l}-p_{\infty}}{q_{\infty}}$
С	specific heat of model skin, Btu/lb-OR
h	heat-transfer coefficient, Btu/sec-ft ² -OR
М	Mach number
N_{St}	Stanton number
р	pressure, lb/sq ft
^p t,2	stagnation pressure behind normal shock, lb/sq ft
q	dynamic pressure, lb/sq ft
r	flat-face-nose radius of stepped-cylinder model, 0.073 ft
R	free-stream Reynolds number per foot
t	time, sec
\mathtt{T}_{t}	stagnation temperature, ^O R
$\mathbf{T}_{\mathbf{W}}$	wall temperature, ^O R
$T_{w,e}$	measured wall equilibrium temperature, ^O R
w	weight of model skin per unit area, lb/sq ft
x ₁ ,x ₂ ,x ₃	surface coordinates of stepped-cylinder model along flat-face nose, conical frustum, and cylindrical afterbody (defined in fig. 1), in.
У	step height of stepped-cylinder model (defined in fig. 1), 0.05 ft
α	angle of attack, deg
γ	ratio of specific heats, 1.4 for air
€	emissivity

L 1503

- σ Stefan-Boltzmann constant, 0.484 \times 10⁻¹², Btu/sec-ft²- ${}^{o}R^{4}$
- ϕ meridian angle, measured in plane normal to axis of symmetry, deg

Subscripts:

4

- i indices of summation
- local conditions at outer edge of boundary layer
- s conditions along stagnation line of infinite swept cylinder
- t stagnation
- $0,1,2,3,\ldots,n$ time sequence
- ∞ free-stream conditions

DESCRIPTION OF MODELS

The construction of the stepped-cylinder model, as illustrated in figure 1, consisted of a truncated conical nose having a 200 half-angle and a base radius 0.6 inch larger than the radius of a cylindrical afterbody. The model was constructed with interchangeable cylinders to facilitate detailed measurements of both pressure and heat-transfer coefficients. Evaluation of the heat-transfer coefficients from transientwall-temperature measurements necessitates thin-walled construction; therefore, the nose section and the cylinder instrumented with thermocouples were constructed by spinning and rolling a 0.030-inch Incomel sheet on form mandrels. Heat losses due to internal conduction, internal convection, and external radiation were minimized by using bulkheads constructed of Transite insulating material relieved in the vicinity of the thermocouples, by venting the shell interior to free-stream static pressure, and by polishing the model to a 10-microinch finish. Pressure measurements were obtained on the thin-walled nose section and the thickwalled cylinder illustrated in figure 1(a). Photographs of both the pressure and heat-transfer configurations are shown in figure 2. heat-transfer configuration was sprayed with an acrylic plastic to decrease the surface luster for photographing.

A second model consisted of the actual outer shell of the fifth stage and a simulated portion of the fourth stage of an NASA five-stage research vehicle. As illustrated in figures 3 and 4, a downstream step exists between the fourth and fifth stages of this model. The model was

constructed as illustrated in figure 3 in the same manner as the stepped-cylinder model to minimize heat losses due to internal conduction, internal convection, and external radiation. In order to minimize lateral deflections of the model during the test, a thick-walled tube was used for internal support with the thin-walled model components attached to it by several flange connections.

INSTRUMENTATION

The stepped-cylinder model was instrumented with sixty No. 30 gage iron-constantan thermocouples and twenty-one static-pressure orifices having 0.035-inch inside diameters. Two stagnation-temperature probes were mounted on the sting behind the model at deflection angles of OO and 100 to the model center line. The location of the thermocouples and pressure orifices as shown in figure 1 is defined by an angle ϕ and surface coordinates x_1, x_2, x_3 with origins at the stagnation point on the flat front face, at the juncture of the flat front face and the conical nose, and at the juncture of the conical nose and the cylinder, respectively. The angle \emptyset is oriented so that when $0^{\circ} \le \emptyset \le 90^{\circ}$ the instrumentation is on the windward half of the model, and when $90^{\circ} \le \emptyset \le 180^{\circ}$ the instrumentation is on the leeward half of the model. The local wall thickness is also presented in figure 1 for each thermocouple location. Each thermocouple output was recorded on a multichannel sequential analog to digital conversion system discussed in reference 5.

The local total pressure outside the boundary layer was determined from measurements taken with a two-tube rake located near the base of the nose section and a six-tube rake located at two axial stations on the cylinder. These rakes are shown in figure 1. The local pressures were measured by electrical transducers and each electrical output was recorded on digital self-balancing potentiometers.

The five-stage research vehicle model was instrumented with 57 iron-constantan thermocouples. The location of the thermocouples and the local wall thicknesses are shown in figure 3. Two stagnation-temperature probes were mounted at the base of the model in line with the two rows of thermocouples. The local free-stream Mach number at the base of the simulated fourth stage was determined by static- and total-pressure measurements.

The tunnel free-stream static and stagnation pressures were measured on precision mercury manometers.

APPARATUS AND TEST CONDITIONS

This investigation was conducted in the high Mach number test section of the Langley Unitary Plan wind tunnel described in reference 6. This variable-pressure, continuous-flow tunnel has an asymmetrical sliding-block nozzle that permits a continuous variation in the test-section Mach number from 2.3 to 4.65. The deviation in Mach number over the entire 4- by 4-foot test section for Mach numbers of 2.65, 3.51, and 4.50 is ± 0.03 , ± 0.05 , and ± 0.06 , respectively.

Both stepped-cylinder configurations had artificial transition in the form of No. 60 carborundum grains located on the conical nose as illustrated in figure 1.

Heat-transfer coefficients for both models and pressure coefficients for the stepped-cylinder model were determined for the following test conditions:

Models	Test	a, deg	Mach number	Stagnation pressure (nominal), lb/sq in. abs
Stepped cylinder	Static pressure	0, 5, 10, 15, 20	2.65	20
Stepped cylinder	Total pressure	0, 5, 10, 15, 20	2.65	20
Stepped cylinder	Heat transfer	0, 5, 10, 15, 20	2.65	20
Stepped cylinder	Heat transfer	0, 5, 10, 15, 20	3.51	35
Stepped cylinder	Heat transfer	0, 10	3.51	10
Five-stage research vehicle	Heat transfer	0	3.51	56, 35
Five-stage research vehicle	Heat transfer	0	4.50	85, 60

The static- and total-pressure tests were conducted separately to avoid interference effects and, due to limited tunnel time, pressure measurements were not obtained at M = 3.51.

METHOD OF HEAT-TRANSFER-DATA REDUCTION

The heat-transfer coefficients were obtained from transient-skintemperature measurements resulting from a stepwise increase in stagnation temperature as discussed in reference 5. The following relation, which assumes constant temperature through the skin, negligible lateral heat flow, negligible heat flow to the model interior, and no heat losses due to radiation, was used:

$$h = \frac{wc\left(\frac{dT_w}{dt}\right)}{T_{w,e} - T_w}$$

This equation as shown in reference 5 can be written in the following form for complete machine calculation:

$$h = \frac{wc(T_{w,n} - T_{w,0})}{\frac{T_{w,e}}{T_{t}} \sum_{0}^{n-1} (T_{t})_{i} \Delta t - \sum_{0}^{n-1} (T_{w})_{i} \Delta t}$$
(1)

The summations are evaluated over increments of time according to the trapezoidal rule

$$\sum_{0}^{n-1} (T)_{i} \Delta t = \Delta t \left(\frac{1}{2} T_{0} + \frac{1}{2} T_{n} + T_{1} + T_{2} + \dots + T_{n-1} \right)$$

and the ratio $T_{w,e}/T_t$ is experimentally determined.

The magnitude of the lateral heat flow for a thin-skin model as discussed in reference 1 is negligible. The heat flow caused by radiation is dependent upon the term $\sigma \epsilon \left(T_W^4 - T_a^4 \right)$, where T_a is the tunnel wall temperature, and this term is negligible.

ACCURACY

The accuracy of the temperature measurements including recorder resolution, thermocouple-wire calibration, and cold junctions is $\pm 2^{\rm O}$ F; however, this error will occur in temperature level rather than in random temperature fluctuations. A temperature error of $\pm 2^{\rm O}$ F could result in ratios of equilibrium temperature to stagnation temperature $T_{\rm w,e}/T_{\rm t}$ greater than 1 in stagnation regions of the model. Also, as discussed in reference 5, in regions of low heat transfer (h less than 0.001), the ratio $T_{\rm w,e}/T_{\rm t}$ may be questionable, because the wall temperature may not have reached equilibrium from the preceding test point.

An estimation of the accuracy of heat-transfer measurements in the Langley Unitary Plan wind tunnel has been determined by the repeatability of data in the tests discussed in reference 1. The accuracy is dependent upon the magnitude of the heat-transfer coefficient. For h>0.0150, the accuracy is within 10 percent; for 0.0010 < h < 0.0150, within 15 percent; and for h<0.0010, within 20 percent. Although h<0.0010 is within the accuracy of data reduction, no significance is attached to the magnitude of h other than to indicate the low-heat-transfer regions.

The accuracy of the precision manometers is within 0.5 lb/sq ft. Therefore, the accuracy of the system is limited to that of the electrical transducer which is 0.5 percent of full-scale deflection. The maximum possible error in the pressure coefficient resulting from the inaccuracy of the electrical transducer is 0.0165.

RESULTS AND DISCUSSION

Schlieren pictures taken of both the stepped-cylinder model and the five-stage research vehicle model and shadowgraph photographs of the stepped-cylinder model are presented in figures 5, 6, and 7. Complete lists of the pressure data obtained on the stepped-cylinder model and the heat-transfer data obtained on both models throughout the range of test variables are presented in tables I to IV.

Pressure Distribution for Stepped-Cylinder Model

Conical nose. The local-pressure-coefficient distribution over the conical segment of the nose is presented in figure 8(a) for M = 2.65, $R = 3.1 \times 10^6$, and angles of attack of 0° , 10° , and 20° . The approximate location of the flow reattachment points as determined from shadowgraphs

is indicated by the solid symbols on the abscissa scale. Due to the lack of instrumentation in the separated region, the extent of the effects of separation on the pressure distribution cannot be specified; however, at $\alpha = 0^{\circ}$ these effects occur over a surface length approximately twice that of the visible separation on the shadowgraphs. same trend will be shown subsequently in the heat-transfer-coefficient distribution. In the region of uniform pressure downstream of the effect of reattachment, the pressure coefficients are approximately 15 percent less than the theoretical cone values determined from reference 7. A similar disagreement between experimental and theoretical values was obtained on a blunted conical nose at M = 3.55 in reference 8. Increasing the angle of attack to 10° resulted in an increase in the pressure coefficients and a decrease in the extent of separation effects. As a crude approximation, the elevated pressure coefficients at this angle of attack were approximated by a 30° cone at an angle of attack of 0°. This approximation overpredicted the experimental values by approximately 10 percent. At an angle of attack of 200, this prediction for a 40° cone at $\alpha = 0^{\circ}$ was approximately 3 percent greater than the experimental values. Since local pressures are necessary in the analysis of heat-transfer investigations and experimental pressures were not obtained at M = 3.51 for this investigation, they were approximated by an equivalent cone at an angle of attack of 00 as a result of the agreement obtained with experimental and theoretical values at M = 2.65.

Cylindrical afterbody. The local-pressure-coefficient distribution over the cylindrical afterbody is shown in figure 8(b) for M=2.65, $R=3.1\times10^6$, and angles of attack of 0° , 10° , and 20° . The approximate location of the flow reattachment points on the cylinder as determined from shadowgraphs is represented by the solid symbols on the abscissa scale. At an angle of attack of 0° , the effect of the separated region on the pressure coefficients is similar to the results obtained on the conical nose and extends to approximately 1.5 times the measured length of separation. Downstream of the region affected by separation, the local pressure returns to approximately the free-stream value, resulting in pressure coefficients of zero magnitude. The local Mach numbers on the cylinder as determined from measured local static and total pressures are approximately constant at a value of 2.1.

At angles of attack of both 10° and 20° , the experimental pressure coefficients downstream of the effects of separation are in good agreement with predicted values from the following equation (ref. 9):

$$\frac{p_{s}}{p_{t,2}} = \sin^{2}\alpha + \left[\frac{\left(\frac{2\gamma M^{2}}{\gamma + 1} - \frac{\gamma - 1}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}}}{\left(\frac{\gamma + 1}{2} M^{2}\right)^{\frac{\gamma}{\gamma - 1}}}\right] \cos^{2}\alpha$$
 (2)

This equation defines the stagnation-pressure ratio along the stagnation line of an infinite swept cylinder evaluated at the free-stream conditions. This agreement was rather surprising as it indicates that the end effects of this configuration on the inviscid flow field outside the boundary layer on the windward side of the cylinder downstream of reattachment are small.

Heat-Transfer Distribution for Stepped-Cylinder Model

Nose section. - The experimental distribution of h on the flat front face portion of the nose is in good agreement with the experimental distributions presented in reference 10 and hence will not be discussed herein. The measured distribution of h on the conical portion of the nose is presented in figure 9 for Mach numbers of 2.65 and 3.51, Reynolds numbers of 0.8×10^6 , 2.5×10^6 , and 2.8×10^6 , and angles of attack of 0° , 10° , and 20° . At M = 2.65 and an angle of attack of 0° (fig. 9(a)), the measured heat-transfer coefficients associated with the separated region at the corner (formed at the intersection of the front face with the conical side) extend to approximately twice the measured distance of separation. The maximum measured h in the region of reattachment is approximately the same magnitude as the measured h at the stagnation point on the front face. However, the experimental values in and downstream of the region of reattachment are in fair agreement with turbulent conical theory (ref. 11) using measured static pressures and wall temperatures, the total pressure behind a normal shock at free-stream Mach number, and a surface length measured from the stagnation point on the flat front face. The movement of the stagnation point with α was determined from reference 10. Although the maximum heat-transfer coefficients in the reattachment regions at angles of attack of 10° and 20° are approximately 170 percent and 200 percent, respectively, of the measured stagnation-point value at an angle of attack of 00, the evaluated distribution of h is predicted by the turbulent cone theory. At an angle of attack of 200, the predicted h is low; closer agreement of theory with experiment has been obtained (although not shown in fig. 9(a)) with a Reynolds number based on the surface distance from the juncture of the flat face and the conical surface.

The heat-transfer-coefficient distribution for M=3.51 and a Reynolds number of 2.8×10^6 are shown in figure 9(b). The theoretical values of h were computed by the method outlined for M=2.65, except that the local static pressures were determined from the pressure coefficients of the equivalent conical flow, as mentioned in the pressure analysis, and the total pressure was assumed to correspond to that behind a normal shock at the free-stream Mach number. At an angle of attack of 0° , the experimental values of h at the forward thermocouples are of the same magnitude as predicted by laminar theory; however, at the

rearward thermocouples the experimental values approach the turbulent theoretical values, thus indicating a gradual transition from laminar to turbulent flow. The distribution of h for a Mach number of 3.51 at the angles of attack other than 0° is very similar to that measured at a Mach number of 2.65; that is, the highest heating occurs in the reattachment region and these maximum values increase with increasing angle of attack. At angles of attack of 10° and 20° , the maximum heat-transfer coefficients were approximately 120 percent and 175 percent of the stagnation-point value at an angle of attack of 0° ; however, these maximum values are approximated by the turbulent cone theory.

The effect of decreasing the Reynolds number from 2.8×10^6 to 0.8×10^6 at M=3.51 and at angles of attack of 0° and 10° is also shown in figure 9(b). The high heating associated with reattachment as previously noted does not occur at the low Reynolds number at either angle of attack. The magnitude of the heating rates at the low Reynolds number is approximately 60 percent of the turbulent theory at both values of α ; however, the laminar conical theory (ref. 11), based on the same conditions as the turbulent theory, is in very good agreement with the experimental data.

Ļ

1

5

Э 3

A comparison of the heating rates in the reattachment region on the conical nose section associated with a turbulent boundary layer with those associated with a laminar boundary layer indicates that the comparatively high heat rates in this reattachment region are primarily a function of the nature of the boundary layer rather than the reattachment mechanism in itself and that, furthermore, these heating rates can be estimated by existing theories provided the local conditions and the nature of the boundary layer are known.

Cylindrical afterbody. The effect of angle of attack, Mach number, and Reynolds number on the heat-transfer-coefficient distribution along the windward meridian of the cylindrical afterbody is presented in figure 10. For purposes of comparison, the measured heat-transfer coefficient at the stagnation point of the nose at an angle of attack of 0° is indicated for each Mach number and Reynolds number.

The effect of angle of attack on the distribution of h at a Mach number of 2.65 and a Reynolds number of 2.5 \times 10⁶ is shown in figure 10(a) for angles of attack of 0°, 10°, and 20°. At an angle of attack of 0°, the distribution of h downstream of the effects of separation is in very good agreement with the turbulent flat-plate theory of reference 11. This theory was based on the local Mach number determined from the measured static and total pressure and a boundary layer originating at the measured reattachment point on the cylinder. At an angle of attack of 10° , the turbulent flat-plate theory gives fair agreement with the

experimental data downstream of the effects of separation. However, for $x_3/y \ge 9$, the experimental values were best predicted by the turbulent, infinite-swept-cylinder theory presented in reference 12. The cylinder stagnation-line pressure was determined from equation (2). The maximum heating in the reattachment region for an angle of attack of 10° was approximately 85 percent of the stagnation value. At an angle of attack of 20° , the maximum h in the reattachment region was approximately 115 percent of the stagnation value. At an angle of attack of 20° , cross flow dominates the stagnation line in the region downstream of the effects of separation, and the resultant heat-transfer coefficients are readily predicted by turbulent swept-cylinder theory.

The effect of increasing the Mach number from 2.65 to 3.51 (fig. 10(b)) at approximately the same Reynolds number resulted in a general decrease in the heat-transfer-coefficient distribution for each angle of attack. The same good agreement between experiment and turbulent swept-cylinder theory was obtained for the portion of the cylinder downstream of the region of reattachment. The turbulent flat-plate theory of reference 11 could not be calculated for this Mach number since no pressure measurements were obtained. The magnitudes of the maximum heat-transfer coefficients in the region of reattachment expressed in terms of percent of the stagnation value on the flat front face for angles of attack of 10° and 20° are approximately 70 and 80 percent, respectively.

The distribution of h is also presented in figure 10(b) for a Mach number of 3.51, a Reynolds number of 0.8×10^6 , and angles of attack of 0^0 and 10^0 . The magnitude of the distribution of h at this Reynolds number is approximately one-third of the values at the higher Reynolds number for each angle of attack. This reduced heating, similar to that measured on the conical nose at this Reynolds number, is representative of a laminar boundary layer. At an angle of attack of 10^0 , the experimental data are in good agreement with infinite-swept-cylinder laminar theory (ref. 9) and is approximately one-half of the turbulent swept-cylinder theory of reference 12.

A plausible explanation of the localized high heating rates occurring at an angle of attack of 20° in the reattachment region downstream of the step is that the cylinder is at a higher angle of attack relative to the velocity vector adjacent to the separation region as compared to the angle of attack relative to the free-stream velocity vector. The instability of the flow pattern in the vicinity of reattachment prevents an accurate measurement of this psuedo angle of attack.

Heat-Transfer Distribution for Five-Stage Research Vehicle Model

The heat-transfer distribution measured on the five-stage research vehicle model is presented in figure 11 for Mach numbers of 3.51 and 4.50 at nominal Reynolds numbers of 3.0 \times 10⁶ and 4.5 \times 10⁶. At stations 59 to 61 and 75 to 86, heat-transfer coefficients were measured along two diametrically opposite axial rays at meridian angles of 0^o and 180^o and are identified by the opened and flagged symbols, respectively. A slight difference in the level of heat-transfer coefficient occurs between thermocouples at $\emptyset = 0^o$ and 180^o . The lack of pressure instrumentation prevents experimental explanation of this phenomenon. For M = 3.51, the heat-transfer distribution downstream of the step is of the same order of magnitude as that between stations 59 and 61 upstream of the influence of the step. Downstream of the step, the predicted values from the turbulent flat-plate theory of reference 11, based upon local Mach number and axial distance from the nose, are between the experimental data for the upper and lower meridian lines.

Increasing the Mach number to 4.50 resulted in a general decrease in the heat-transfer distribution as shown in figure 11(b) at each Reynolds number. Fair agreement was obtained between the experimental values downstream of the step and turbulent flat-plate predictions.

CONCLUDING REMARKS

Heat-transfer coefficients on two axisymmetric models having downstream facing steps were determined in the Langley Unitary Plan wind tunnel. One model, denoted as the stepped-cylinder model, consists of a truncated conical nose with a base radius larger than the cylindrical afterbody. The second model duplicates the downstream facing step at the juncture of the fourth and fifth stages of an NASA five-stage research vehicle.

The stepped-cylinder model was tested at Mach numbers of 2.65 and 3.51, at Reynolds numbers from 0.8×10^6 to 3.1×10^6 , and at angles of attack from 0^0 to 20^0 . At all angles of attack the heating rates on the conical nose in and downstream of the region of reattachment were predicted by turbulent cone theory based on the local Mach number and the local Reynolds number using a distance measured from the stagnation point on the front face. At an angle of attack of 0^0 the measured heat-transfer rates downstream of the region of separation were in good agreement with turbulent flat-plate theory based on local conditions and a boundary layer originating at the region of reattachment. The maximum heat-transfer coefficient in the reattachment region along the

windward meridian of the cylinder at an angle of attack of 20° was 115 percent of the measured stagnation-point value at an angle of attack of 0° . The measured heating rates downstream of the region of reattachment at angles of attack greater than 0° were in good agreement with turbulent infinite-swept-cylinder theory.

The research vehicle model was tested at Mach numbers of 3.51 and 4.50, at Reynolds numbers from 2.8×10^6 to 4.5×10^6 , and at an angle of attack of 0° . The measured values downstream of the rearward facing step were in good agreement with turbulent flat-plate theory evaluated at local conditions and a local Reynolds number based on the axial length from the forward stagnation point.

The measured heating rates in the reattachment regions on both models at an angle of attack of 0° indicate no excessive heating rates above those predicted by flat-plate and conical theories.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Air Force Base, Va., July 6, 1961.

REFERENCES

- Taylor, Nancy L., Hodge, Ward F., and Burbank, Paige B.: Heat-Transfer and Pressure Measurements of a 1/7-Scale Model of a Mercury Capsule at Angles of Attack From 0° to ±20° at Mach Numbers of 3.50 and 4.44. NASA TM X-522, 1961.
- 2. Gadd, G. E., Cope, W. F., and Attridge, J. L.: Heat-Transfer and Skin-Friction Measurements at a Mach Number of 2.44 for a Turbulent Boundary Layer on a Flat Surface and in Regions of Separated Flow. R. & M. No. 3148, British A.R.C., 1960.
- 3. Naysmith, A.: Heat Transfer and Boundary Layer Measurements in a Region of Supersonic Flow Separation and Reattachment. Tech. Note No. Aero. 2558, British R.A.E., May 1958.
- 4. Chapman, Dean R., Kuehn, Donald M., and Larson, Howard K.: Investigation of Separated Flows in Supersonic and Subsonic Streams With Emphasis on the Effect of Transition. NACA Rep. 1356, 1958. (Supersedes NACA TN 3869.)
- 5. Burbank, Paige B., and Hodge, B. Leon: Distribution of Heat Transfer on a 10° Cone at Angles of Attack From 0° to 15° for Mach Numbers of 2.49 to 4.65 and a Solution to the Heat-Transfer Equation That Permits Complete Machine Calculations. NASA MEMO 6-4-59L, 1959.
- 6. Anon.: Manual for Users of the Unitary Plan Wind Tunnel Facilities of the National Advisory Committee for Aeronautics. NACA, 1956.
- 7. Staff of the Computing Section, Center of Analysis (Under Direction of Zdeněk Kopal): Tables of Supersonic Flow Around Cones. Tech. Rep. No. 1 (NOrd Contract No. 9169), M.I.T., 1947.
- 8. Lawson, Warren A., McDearmon, R. W., and Rainey, R. W.: Investigation of the Pressure Distributions on Reentry Nose Shapes at a Mach Number of 3.55. NASA TM X-244, 1960.
- 9. Goodwin, Glen, Creager, Marcus O., and Winkler, Ernest L.: Investigation of Local Heat-Transfer and Pressure Drag Characteristics of a Yawed Circular Cylinder at Supersonic Speeds. NACA RM A55H31, 1956.
- 10. Burbank, Paige B., and Stallings, Robert L., Jr.: Heat-Transfer and Pressure Measurements on a Flat-Face Cylinder at a Mach Number Range of 2.49 to 4.44. NASA TM X-19, 1959.

- 11. Van Driest, E. R.: The Problem of Aerodynamic Heating. Aero. Eng. Rev., vol. 15, no. 10, Oct. 1956, pp. 26-41.
- 12. Beckwith, Ivan E., and Gallagher, James J.: Local Heat Transfer and Recovery Temperatures on a Yawed Cylinder at a Mach Number of 4.15 and High Reynolds Numbers. NASA TR R-104, 1961. (Supersedes NASA MEMO 2-27-59L.)

TABLE I.- RAKE PRESSURE MEASUREMENTS ON THE STEPPED-CYLLNDER MODEL.

_
æ
= 610°
H T
ft;
lb/sq
0
2,882.
11
Pt,8
.65
αi
0
Σ_

Normal distance		p_{\perp} , for $\alpha = 0^{\circ}$ a	<u>ب</u> ا	pt. 2 for o	$p_{t,2}$ for $\alpha = 5^0$ at -	$p_{t,2}$ for $\alpha = 10^{\circ}$ at -	= 10° at -	$p_{t,2}$ for $\alpha = 15^0$ at -	= 15° at -	$p_{t,2}$ for $\alpha = 20^{\circ}$	= 20° at -
from surface,	* 2.	x ₃ = 6.50 in.	x ₃ = 9.50 in.	$x_5 = 6.50 \text{ in.}$	_	x ₅ = 6.50 in.	$x_5 = 9.50 \text{ in.}$	$x_3 = 6.50 \text{ in.}$	x ₃ = 9.50 in.	x ₃ = 6.50 in.	x ₅ = 9.50 in.
0	1,205.9	478.7	399.0	587.9	536.2	723.5	671.7	838.3	4.678	905.0	1,055.7
.125		648.8	574.0	788.1	764.2	993.2	1,075.4	1,236.7	1,283.7	1,367.4	1,415.4
. 250	1,221.2	749.6	650.8	854.9	4.488	1,136.0	1,214.1	1,370.6	1,354.7	1,431.1	1,450.0
. 375		834.6	724.4	975.6	1,023.0	1,291.5	1,294.2	1,389.7	1,336.2	1,428.0	1,437.4
رار. 100 ا		863.0	792.0	1,061.4	1,075.4	1,326.4	1,297.3	1,402.5	1,354.7	1,447.1	1,436.9
, t		811,17	8,35.1	8 _{133.5}	8132.5	8158.7	8 ₁ 47.9	⁸ 191.2	a _{182.1}	8226.3	8-232-8

Ameasurements obtained from rake static tube.

TABLE II.- PRESSURE MEASUREMENTS OBTAINED ON THE WINDWARD MERIDIAN

OF THE STEPPED-CYLINDER MODEL

 $[M = 2.65; T_t = 610^{\circ} R]$

a v		lb/sq ft		1.7980	1.8173	.6737	.9353	.9353	956	5556	.936		0.1471	T. 198	1091	. 1920 55.50	. 1938	.1845	.1798	.1798	1798	.1(yo	
	= 200;	2,882.0 lb/sq							_				Q I		0	ЭV -	- 0	\ 6 0		_	<u> </u>		
l _d	ಕ	ft pt, = 2		1,316.	1,329.	576	749.	749.	745.	749.	733.1		250.	251.		260. 7.7.	505	254.	251.	251.	251.7	TC2	
ď	15°;	2,881.0 lb/sq ft		1.7497	1.7545	. 3834	.6981	.7168	.7168	.7309	10th.		-0.0125	.1132	.1225	. 1272	722.	1179	6211.	.1132	.1086	.1059	
² d	α =]	Pt, 8 =		1,283.7	1,286.8	385.7	592.5	604.8	8.409	614.1	623.4 620.3		125.5	208.1	214.2	217.3	274.2	211.0	211.2	208.1	205.1	202.0	
a _D	100;	2,882.0 lb/sq ft	ne nose	1.7423	1.7281	1.0774	.5327	.5374	.5374	.5420	.5467	fterbody	-0.0868	.0533	. 888	.0579	.0579	9,50	9856	.0579	6250.	.0533	
Ъĵ	#	11	Truncated-cone nose	1,278.8	1,269.5	1,220.2	183.8	1486.9	486.9	6.684	493.0 496.1	Cylindrical afterbody	76.6	168.6	174.7	171.6	171.6	1.4.7	174.7	171.6	171.6	168.6	
υ	50;	2,882.0 lb/sq ft pt, ~		1.7376	1.7047	1.6015	. 3592	. 3874	. 2874	3874	4014. 1004.	Ü	-0,1240	0166	.0207	1910.	4110.	.0161	200.	1990		1900.	
P1	8	$ \mathbf{ft} _{\mathbf{p_t},\infty} = 2,882$		1,275.7	1,254.1	1,186.3	269.8	388.3	788.3	288.3	397.5		20.05	122.8	147.3	244.2	141.2	144.5	1,58.1	4.62.	138.1	138.1	
ပိ	, ; ₀₀	2,880.0 lb/sq ft		1.7176	1.6475	1.5306	0000	0259	ノンハン	.2453	.2500		-0 1×80	0866	2000	.0023	+2005-	002 ⁴	+.0024	1.000	+200c+	.0023	
p,	8	$p_{t,\infty} = 2,880$		1.261.6	1,215.6	1,138.8	0.60	288.5	2001	7.467	297.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 2 7	2,7,7	. ני	135.1	132.0	132.0	132.0	152.0	152.0	135.1	
	Orifice			-	+ N	М.	+ u	74	J C	- α	٥٥٥	2	7	15	7 ;	77	15	16	17	2	616	2 2	_

TABLE III.- LOCAL HEAT-TRANSFER MEASUREMENTS OBTAINED ON THE STEPPED-CYLINDER MODEL

L-1503

(a) M = 2.65

NSt	709 ^o R; lb/sq ft	0.00371 0.00371 0.00376 0.004788 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.00478 0.004788 0.00478 0.00
ч	20°; T _t = 709° = 2,831.8 lb/sq	0.01512 0.01512 0.0166 0.02165 0.02166 0.02169 0.02190 0.022190 0.022190 0.022190 0.022190 0.022190 0.022190 0.022190 0.022190 0.022190 0.02222222222222222222222222222222222
Tv, deg	20°; = 2,8	\$46.000000000000000000000000000000000000
Tw, e/Tt	ης τ, α 8,	0. 99889 (57. 2. 99889 (67. 2. 99889 (67. 2. 99889 (67. 2. 99889 (67. 2. 99889 (67. 2. 99889 (67. 2. 99889 (67. 2. 99889 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 99899 (67. 2. 9989 (67
Ngt	50 R; /sq ft	0.003300 004123 004123 004123 004123 004123 004123 004123 00223 00
ц	15°; T _t = 713° R; = 2,885.3 lb/sq ft	0.0.1510 0.01746 0.01978 0.01978 0.01978 0.01978 0.02977 0.02978
T. de g	= 15°; « = 2,8	6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64
$\mathtt{T}_{\mathtt{W},\mathrm{e}}/\mathtt{T}_{\mathrm{t}}$	α = Pt, α	0.99771 99600 997016 97106
NSt	R; sq ft	0.00345 0.00365 0.00365 0.00365 0.00366 0.00393 0.00368 0.00388
ч	2,939.3 lb/sq ft	0.01514 0.01514 0.01514 0.01517 0.0151
T, deg) I	\$2,500,000,000,000,000,000,000,000,000,00
$T_{\rm w,e}/T_{\rm t}$	α = Pt, α	0.99603 994043 994104 971057 97105
NSt	R; sq ft	0.003059 0.003049 0.00394 0.00394 0.00394 0.00394 0.00396 0.00
д	'; T _t = 712 ^o R; 2,884.6 1b/sq ft	0.010400 0.01400 0.01572 0.015
deg.	1 20 1	\$33\$\frac{2}{2}2
$T_{\rm v,e}/T_{\rm t}$	α = Pt,∞	99888 99894 99894 99894 99771 99895 97759 97759 97759 97770
NSt	R; sq ft	0.002842 002845 002845 002845 002845 002845 002845 002845 002846 002846 002846 002846 002846 002846 00286 00
ч); T _t = 710° R; 2,881.5 lb/sq	0.01298 0.01298 0.01219 0.0121
deg	0 .	෫෭෫෭෭෭෭෭෦෫෭෦෫෭෦෦෫෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦෦
$T_{\rm w,e}/T_{\rm t}$	α = Pt, α	1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
	couple	しゅうしょうしゅりいにはおいいいいにはいいいいいにいいっちょうしょうしょうしょうしょうしょうしょうしょうしょくしょうしょくしょうしょくしょくしょくしょくしょくしょくしょくしょくしょくしょくしょくしょく

TABLE III. - LOCAL HEAT-TRANSFER MEASURMENTS OBTAINED

ON THE STEPPED-CYLINDER MODEL - Continued

(b) M = 3.51

Thermo-	$T_{\rm w,e}/T_{\rm t}$	T _w , deg	h	N _{St}	$T_{w,e}/T_{t}$	T _w , deg	h	N _{St}
couple		~ _ ^O. r	$T_t = 715^{\circ}R$			- 100.	$T_{t.} = 708^{\circ}$	р.
	, ,	. ز∹ب – داد لداد –	45.1 1b/sq	f+	7	ز 10 - 1 1 - 10 ا	1t - 100 +40.7 lb/sq	11,
	Pt.	,∞ - ⊥,	+).1 10/64	10	P ₁	,∞ - <u>-</u> ,-	140.1 10/80	1 10
1	1.00619	642.5	0.00631	0.006149	0.99430	629.5	0.00725	0.007069
2	.99887	641.2	.00651	.006344	.99202	633.2	.00781	.007615
3	.98817	635.9	.00644	.006276	.98519	632.2	.00781	.007615
3 4	.97860	629.2	.00582	.005672	.97835	628.5	.00717	.006991
5	.96452	606.5	.00359	.003499	.96753	610.9	.00491	.004787
5 6	.96339	597.2	.00281	.002738	.97038	609.9	.00464	.004524
7	.95889	590.5	.00248	.002417	.96696	599.9	.00384	.003744
8	.95720	586.2	.00222	.002163	.96696	594.5	.00346	.003374
9	.96564	588.2	.00182	.001774	.97380	595.9	.00302	.002945
10	.96959	588.9	.00176	.001715	.97493	595.5	.00276	.002691
11	97353	589.9	.00163	.001588	.97152	594.5	.00294	.002867
13					1.00854	593.9	.00062	.000605
14					.99088	595.5	.00181	.001765
15	1.01464	597.9	.00011	.000107	.97721	592.5	.00228	.002223
16	1.00225	591.9	.00021	.000205	97038	585.9	.00210	.002048
17	.99380	589.2	.00045	.000439	.96354	579.2	.00178	.001736
19	.99267	590.2	.00062	.000604	.96240	576.5	.00164	.001599
20	.99662	593.2	.00068	.000663	.96924	582.5	.00142	.001385
21	.99042	590.2	.00075	.000731	.96013	579.2	.00156	.001521
22	.98986	589.9	.00070	.000682	.95842	573.5	.00154	.001502
23	.99042	590.5	.00079	.000770	.95899	574.5	.00166	.001619
24	.98873	589.5	.00071	.000692	.95671	573.2	.00155	.001511
25	.98873	589.9	.00081	.000789	95614	573.2	.00156	.001521
26	.99098	590.5	.00075	.000731	.95785	574.5	.00160	.001560
28	.98986	590.2	.00079	.000770	.95614	573.5	.00171	.001667
30	.99098	590.2	.00069	.000672	.95728	574.9	.00171	.001667
31	.98930	589.2	.00075	.000731	.95500	573.5	.00166	.001619
32	.98930	590.5	.00080	.000780	.95500	573.5	.00177	.001726
	.98592	587.2	.00080	000780	.95101	570.9	.00162	.001580
33 34	.98817	589.2	.00073	.000711	.95329	572.5	.00176	.001716
35	.98648	588.5	.00085	.000828	.95215	571.5	.00171	.001667
36	.98479	588.2	.00094	.000916	.95158	570.9	.00169	.001648
37	98761	590.2	.00093	.000906	.95443	572.9	.00169	.001648
38	98986	591.9	.00096	.000936	.95614	573.9	.00168	.001638
39	.98761	590.9	.00102	.000994	.95500	573.2	.00163	.001589
40	99774	597.2	.00099	.000965	96468	578.5	.00167	.001628
46	99155	592.2	.00080	.000780	.95728	571.2	.00135	.001316
47	.99098	591.2	.00080	.000780	.95500	571.2	.00143	.001394
48	.98986	589.9	.00081	.000789	.95272	570.2	.00153	.001492
50	.99042	589.5	.00073	.000711	95272	567.5	.00120	.001170
52	.99211	591.2	.00075	.000731	.95614	567.9	.00106	.001034
53	.99267	590.9	.00065	.000633	95557	567.9	.00105	.001024
55	.99042	590.9	.00079	.000770	.95500	564.5	.00070	.000683
56	99155	591.2	.00078	,000760	•95557	563.5	.00074	.000722
58	.98986	588.9	.00085	.000828	.96354	564.2	.00022	.000215
59	.98817	589.9	.00083	.000809	.97266	572.9	.00059	.000575
60	.99098	588.5	.00062	.000604	98462	581.5	.00076	.000741

TABLE III.- LOCAL HEAT-TRANSFER MEASURDERNYS OBTAINED ON THE STEPPED-CYLINDER MODEL - Concluded

(b) M = 5.51 - Concluded

3	30 R; sq ft	0.00591 0.0437 0.0437 0.0437 0.05825 0.05913 0.0591
:	20°; I _t = 718° R; 5,066.0 lb/sq ft	0 1737 0 0 0 1757 0 0 1757 0 0 1757 0 0 1757 0 0 1755 0 0 1755 0 0 1757 0 0
deg	" "	994715 650. 5 0. 69488 664.89 99488 664.89 99695 680.8 99695 680.8 99695 660.9 99695 660.9 99595 660.9
'w, e/ 't	α = Pt, α	
201	R; ↑	747700 747700
	15°; T _t = 717° = 5,024.0 lb/sq	0.01440 0.11541 0.101686 0.101616
gap	= 15°; T _t = 5,024.	665,50 665,50
'w,e/ 't	Pt, s	799497 799797 799797 7979797 7979797 7979797 7979797 7979797 797979 7
NSt.	R; ft	7.003697 9.001698 9.0016888 9.001688 9.001
ų	= 716° 1b/sq	45.10.0 10.000000000000000000000000000000
deg	= 10°; T _t = 5,049.0	54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tv,e/Tt	Pt, s	S. C.
NSt	., £	0003594 0003584 0003584 0003584 0003586 000358
æ	%; T _t = 717° R; 5,053.0 lb/sq ft	0.0273.0 1.001.0273.0 1.001.028.0 1.001.009.0
Tw, deg	5°; Tt	990566 646.2 990566 648.2 96849 615.9 97651 653.9 97751 653.9 97778 659.9 97778 659.9 97778 659.9 97778 659.9 97778 659.9 9778 659.9
Tw, e/Tt	ν α ± η π =	
NS: Tw	R; ft	0003349 0003324 0003324 0001534 0001539 0001539 0001539 0002637 0002637 0002637 0002637 0002637 0002637 000037 000037 000097
	714°	011203 0011212 001194 001068
, a		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
T., e/Tt	ρ α = Dt, α	1.00172 648.5 0.99713 647.5 0.99713 647.5 0.99713 647.5 0.97944 655.9 0.96544 661.2 0.96644 661.2 0.96644 661.2 0.96644 661.2 0.96644 661.2 0.96644 661.2 0.96644 661.2 0.9740 661.5 0.9972 66
E	The rmo-	こっちょうちょうしゅりいにいいいいいいいいいいいいいいしゅしょうちょうしょうしょ

Table iv. - local heat-transfer measurements oftained on the five-stage research vehicle model $\begin{bmatrix} \alpha_i & 0^0 \end{bmatrix}$

i	NSt			ft	894000.0 894							
	ч		= 676° R;	= 12,261.0 lb/sq	0.00177 0.00169 0.0							
	Tw,		÷,	pt, a = 12,	5.5.5.5.5.5.5.5.7.1 1.5.5.5.5.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.							
	Tw,e/Tt	4.50		ρį	99999999999999999999999999999999999999							
	NSt.	Σ		ft	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000							
	я		671° R;	8,637.0 1b/sq	74100.0 841							
	Tw,		Tr =	Pt, = 8,63	22282288882 EEFFF88888888888888888888888888888888							
	Tv,e/Tt			Pt,	90.00							
[a = 0 ₀]	NSt.			I ft	0.0000 0.00055 0.00000 0.0000 0.00							
	ч		711° R;	p _{t, w} = 8,066.0 lb/sq f	66.0 lb/sq f	766.0 lb/sq f	066.0 lb/sq f	066.0 lb/sq f	066.0 lb/sq f	,066.0 lb/sq	,066.0 lb/sq f	0.000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000
	T _v , deg		H.		86666666888888888888888888888888888888							
	$_{ exttt{Tw,e/Tt}}$	3.51			0.9402 9.9462 9.9462 9.9462 9.9462 9.9462 9.9463 9.9463 9.9463 9.9463 9.9463 9.9463 9.9264 9.9266							
	NSt	W =		· ·	0.000792 0.0							
	ч		714° R;	5,088.0 lb/sq ft	0.00273 0.00273 0.0028							
	T., deg		÷ t	" 8	88888688888888868666666666666666666666							
	Tv,e/Tt			Pt,	6.9909.0 6.9930							
		The rmo-	conple		スタイル かいかい かいけいけい かん かん かん かん かん かん かん かい でいい いっし りょう トラ トラ トラット しょう アルシャン かん							

L-1503

Figure 1.- Details of stepped-cylinder model with thermocouple and pressure-orifice locations. (All dimensions are in inches unless otherwise indicated.)

(a) Heat-transfer configuration.

L-60-3705

(b) Pressure configuration with rearward pressure rake installed.

Figure 2.- Stepped-cylinder model.

D

L-1503

(All dimen-Figure 3.- Details of five-stage research vehicle model with thermocouple locations. sions are in inches unless otherwise indicated.)

(a) Complete model.

L-60-4615

(b) Enlargement of step.

L-60-4617

Figure 4.- Five-stage research vehicle model.

(a) M = 2.65; $R = 3.1 \times 10^6$. L-61-2193

Figure 5.- Typical schlieren photographs of stepped-cylinder model.

 $\alpha = 20^{\circ}$

$$\alpha = 0^{\circ}$$

 $\alpha = 10^{\circ}$

(b)
$$M = 3.51$$
; $R = 1.0 \times 10^6$.
Figure 5.- Continued.

L-61-2192

 $\alpha = 0^{\circ}$

 $\alpha = 10^{\circ}$

 $\alpha = 15^{\circ}$

α = 20°

(c) M = 3.51; $R = 3.5 \times 10^6$. L-61-2191

Figure 5.- Concluded.

(a) M = 2.65; $R = 3.1 \times 10^6$. L-61-2194

Figure 6.- Typical shadowgraph photographs of stepped-cylinder model.

α = 20°

 $\alpha = 0^{\circ}$

 $\alpha = 10^{\circ}$

a = 20°

(b)
$$M = 3.51$$
; $R = 3.5 \times 10^6$.

L-61-2195

Figure 6.- Concluded.

(a) M = 3.51; $R = 2.2 \times 10^6$.

(b) M = 4.50; $R = 3.2 \times 10^6$.

L-61-2196

Figure 7.- Composite schlieren photographs of five-stage research vehicle model. α = 00.

Ď

L-1503

(b) Cylindrical afterbody.

Figure 8.- Effect of angle of attack on pressure-coefficient distribution along windward meridian of stepped-cylinder model. $M=2.65;\ R=5.1\times10^6.$

(a)
$$M = 2.65$$
.

(b) M = 3.51.

Figure 9.- The effect of angle of attack, Mach number, and Reynolds number on local heat-transfer-coefficient distribution along windward meridian of conical nose of stepped-cylinder model.

L-1503

(b) M = 5.51.

Figure 10. - The effect of angle of attack, Mach number, and Reynolds number on local heattransfer-coefficient distribution along windward meridian of afterbody of steppedcylinder model.

Figure 11.- The effect of Mach number and Reynolds number on the heat-transfer-coefficient dis- $\alpha = 0^{\circ}$ tribution measured on the five-stage research vehicle model.

(b) M = 4.50.